Telegram Group & Telegram Channel
Если у вас есть числовые признаки, то как работает разбиение узла при бэггинге?

Основу этой ансамблевой модели (которую также можно назвать Случайный лес) составляют деревья решений. В них разбиение работает по следующему алгоритму:
▪️Сначала определяется, какой из признаков лучше всего использовать для разбиения на данном этапе построения дерева. Решение обычно основывается на критерии прироста информации.
▪️Для выбранного числового признака алгоритм ищет оптимальное значение, которое будет использоваться в качестве порога для разбиения. Например, если признак — это возраст, алгоритм может определить, что разбиение на группы меньше 30 лет и >30 лет максимизирует критерий выбора.

В бэггинге каждое дерево строится независимо от других, используя случайное подмножество признаков. Разбиения в деревьях осуществляются таким же образом, как описано выше, но поскольку каждое дерево обучается на разных данных, они могут делать разные разбиения даже для одних и тех же признаков.

#машинное_обучение



tg-me.com/ds_interview_lib/243
Create:
Last Update:

Если у вас есть числовые признаки, то как работает разбиение узла при бэггинге?

Основу этой ансамблевой модели (которую также можно назвать Случайный лес) составляют деревья решений. В них разбиение работает по следующему алгоритму:
▪️Сначала определяется, какой из признаков лучше всего использовать для разбиения на данном этапе построения дерева. Решение обычно основывается на критерии прироста информации.
▪️Для выбранного числового признака алгоритм ищет оптимальное значение, которое будет использоваться в качестве порога для разбиения. Например, если признак — это возраст, алгоритм может определить, что разбиение на группы меньше 30 лет и >30 лет максимизирует критерий выбора.

В бэггинге каждое дерево строится независимо от других, используя случайное подмножество признаков. Разбиения в деревьях осуществляются таким же образом, как описано выше, но поскольку каждое дерево обучается на разных данных, они могут делать разные разбиения даже для одних и тех же признаков.

#машинное_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/243

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Telegram announces Search Filters

With the help of the Search Filters option, users can now filter search results by type. They can do that by using the new tabs: Media, Links, Files and others. Searches can be done based on the particular time period like by typing in the date or even “Yesterday”. If users type in the name of a person, group, channel or bot, an extra filter will be applied to the searches.

Dump Scam in Leaked Telegram Chat

A leaked Telegram discussion by 50 so-called crypto influencers has exposed the extraordinary steps they take in order to profit on the back off unsuspecting defi investors. According to a leaked screenshot of the chat, an elaborate plan to defraud defi investors using the worthless “$Few” tokens had been hatched. $Few tokens would be airdropped to some of the influencers who in turn promoted these to unsuspecting followers on Twitter.

Библиотека собеса по Data Science | вопросы с собеседований from kr


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA